We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Method Enables Detection of Lung Cancer through Blood Tests

By LabMedica International staff writers
Posted on 02 Feb 2024
Print article
Image: Using blood tests to diagnose lung cancer can be less invasive for patients (Photo courtesy of 123RF)
Image: Using blood tests to diagnose lung cancer can be less invasive for patients (Photo courtesy of 123RF)

Lung cancer continues to be a very deadly disease with only 19% of diagnosed patients remaining alive after five years. This makes it important to accurately detect the different forms of lung cancer, each with its own treatment and approach, at an early stage so that patients can be better treated. Currently, there is a gold standard for determining whether someone has lung cancer. If suspected, the first step is a scan, such as CT or PET CT. That gives insight into where the symptoms may be coming from and the location of possible cancer cells or a tumor. The second step is a biopsy in which a ‘morsel’ of tissue is removed and examined under the microscope. However, evidence of tumor cells cannot always be obtained. Additionally, sometimes people are too old or too sick and the biopsy itself is too risky for their health. Also, sometimes people refuse to undergo the procedure. Now, researchers have developed a method to demonstrate the presence of lung cancer through blood tests by examining proteins in the blood of people with, without, and with possible lung cancer. This method can be developed in the future, to make it suitable for predicting lung cancer.

To find a testing method that is much less invasive for lung cancer patients, researchers at Eindhoven University of Technology (TU/e, Netherlands) first examined blood from three groups of people: with, without, and with possible lung cancer to ascertain the proteins. Interestingly, they found that in 13% of patients, the current gold standard could not conclusively determine whether or not these patients had lung cancer. The patient survey provided a huge database the researchers were able to work with. The team developed new detection methods for quantifying two promising lung cancer protein tumor markers based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). This is a method that looks at the weight of proteins in the blood and thus recognizes tumor markers.

This allowed the researchers to detect these markers even at very low concentrations in the blood of patients with lung cancer. The new methods can help in follow-up studies to find out whether LC-MS/MS-based detection can also add value in clinical practice in the hospital compared to current methods. To facilitate the step to the hospital or clinical practice, the team has developed not only the diagnostic method but also a decision algorithm for GPs. Since GPs have to pay attention to a combination of factors instead of just one marker, the decision algorithm can help them correctly interpret blood test results according to the new method. The researchers are now preparing to conduct a study to validate the method which could one day allow people to go to their doctor and get a blood test to find out whether they have lung cancer.

“Blood sampling is much less painful and risky. Especially for the high-risk lung cancer group, where smoking and age are the main risk factors,” said Sylvia Roovers-Genet, a PhD researcher at TU/e. “We have now scientifically proven that lung cancer can be demonstrated in blood. We can now use our method, based on blood tests, to be able to say with at least 95 percent certainty for two-thirds of patients that they have lung cancer.”

Related Links:
TU/e

Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more