We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genomic Urine Test Predicts Bladder Cancer Recurrence Before Clinical Symptoms Emerge

By LabMedica International staff writers
Posted on 23 Aug 2023
Print article
Image: The UroAmp test detects bladder cancer 12 years before clinical signs and symptoms appear (Photo courtesy of Convergent Genomics)
Image: The UroAmp test detects bladder cancer 12 years before clinical signs and symptoms appear (Photo courtesy of Convergent Genomics)

Bladder cancer, a highly prevalent disease, ranks among the UK's top ten most common cancers and the fifth most common across the European Union. Unfortunately, advanced bladder cancer has a bleak prognosis, as only approximately 50% of patients survive beyond five years after diagnosis. This is largely attributed to late diagnosis and recurring bouts of the disease. Nevertheless, the odds of survival escalate significantly when bladder cancer is identified in its early stages – over 80% of patients diagnosed early survive for at least five years. Now, new research has shown that a non-invasive genomic urine test can detect bladder cancer or predict its recurrence before clinical signs or symptoms appear.

UroAmp from Convergent Genomics (South San Francisco, CA, USA) employs next-generation DNA sequencing to deeply examine 60 key genes related to urothelial cancer, hunting for mutations, while simultaneously broadly assessing genome-wide changes. The outcome is a comprehensive genomic profile offering insights into a patient's cancer prognosis and predicted responses to genome-targeted drug treatments. In a multi-center case-control study, UroAmp's diagnostic and prognostic performance for bladder cancer was measured against standard-of-care methods such as cystoscopy, cytology, and pathology. The study encompassed 581 patients, including those under evaluation for hematuria (blood in urine) and those undergoing post-surgery recurrence monitoring.

Notably, UroAmp demonstrated its capability to detect minimal residual disease in surveillance patients post-cystoscopy and urine cytology, with several predicted recurrences identified over a year before clinical diagnosis. The study revealed that high-risk patients were six times more likely to experience cancer recurrence compared to low-risk patients – a crucial insight given the disease's overall recurrence rate of 60% to 70% following treatment. Additionally, UroAmp showcased a sensitivity of 95% and specificity of 90% in detecting bladder tumors during the initial diagnosis phase. This study builds upon recent breakthroughs from large public research initiatives, further defining the key genome segments that are most commonly mutated in bladder cancer. The research also identified gene associations with tumor grade and bladder invasion. A UroAmp molecular grade prediction algorithm accurately identified high-grade cancers with a positive predictive value of 88% and specificity of 95%. Several mutations discovered in this research are also under study as potential targets for new drugs or for predicting responses to existing FDA-approved therapies.

"These findings demonstrate the power of genomics in detecting minimal residual disease from urine and accurately stratifying a bladder cancer patient's risk to better inform decisions about their treatment and surveillance," said Keyan Salari, MD, PhD, lead study author and Assistant Professor of Urology at Harvard Medical School and Massachusetts General Hospital

"The combination of prognostic insights, therapeutic targets, and the ability to non-invasively monitor genomic response over time with UroAmp presents a new paradigm to enhance clinical trials and to ultimately better personalize care and improve outcomes," added study co-author Trevor Levin, Ph.D., Founder and CEO, Convergent Genomics.

Related Links:
Convergent Genomics 

Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more