AI-Based Tool Uses Tumor Gene Sequencing Data to Identify Site of Origin for Enigmatic Cancers
By LabMedica International staff writers Posted on 08 Aug 2023 |

For a small segment of cancer patients, the origin of their cancer remains undetermined, making it challenging to select the most effective treatment. This is because most cancer medications are designed for distinct types of cancer. Researchers have now developed a new methodology, utilizing machine learning, to pinpoint the origins of these elusive cancers. This computational model evaluates the sequences of roughly 400 genes to predict a tumor's site of origin. In a dataset comprising about 900 patients, the model was able to accurately categorize 40% of untraceable tumors, thus potentially increasing the number of patients eligible for genomically guided, targeted treatment by 2.2 times.
In 3 to 5% of cancer cases, especially when tumors have metastasized across the body, determining the initial site where the cancer originated is a challenge. These tumors are termed as cancers of unknown primary (CUP). The inability to determine their origin hampers the administration of "precision" drugs, which are tailored for specific cancer types. These precision medications are not only more effective but also have fewer side effects than the more general treatments often prescribed to CUP patients. To address this issue, researchers from the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) and Dana-Farber Cancer Institute (Boston, MA, USA) analyzed routinely collected genetic data from Dana-Farber to predict cancer types. This data consisted of gene sequences for about 400 genes that are frequently mutated in cancer cases. Using this data, a machine-learning model was trained on nearly 30,000 patients diagnosed with one of 22 known cancer types.
When this model, termed OncoNPC, was tested on 7,000 tumors that it had never seen before but whose site of origin was known, it predicted their origins with an astounding 80% accuracy, which increased to 95% for tumors with high-confidence predictions which constituted about 65% of the total. This model was then applied to around 900 CUP tumors from Dana-Farber. For 40% of these tumors, the model delivered high-confidence origin predictions. Further, when the model's forecasts were corroborated against germline (inherited) mutations in some tumors with available data, the team found that the model’s predictions often matched the type of cancer most strongly predicted by the germline mutations than any other type of cancer.
The model's accuracy was further validated by comparing CUP patients' survival time against the typical prognosis for the type of cancer predicted by the model. For instance, CUP patients predicted to have a grimmer prognosis, like pancreatic cancer, indeed had comparatively shorter survival times, while those predicted to have a more favorable prognosis, such as neuroendocrine tumors, lived longer. Additionally, 10% of the studied CUP patients received a targeted treatment based on oncological speculation. Among these, those treated in line with the model's predictions had better outcomes. The researchers also examined if the model’s predictions could be useful based on the types of treatments that CUP patients analyzed in the study had received. Around 10% of these patients had received targeted treatment, based on their oncologists’ best guess about where their cancer had originated. Among these patients, those who received treatment consistent with the type of cancer predicted by the model for them fared better than patients who received a treatment generally administered for a different type of cancer than what the model predicted for them.
Furthermore, the researchers used the model to identify an additional 15% of patients (a 2.2-fold increase) who could have benefited from targeted treatments if their cancer's origin had been known. Sadly, they were treated with general chemotherapy drugs. The team is now keen on expanding their model to incorporate varied data types, like pathology and radiology images, to provide a more comprehensive prediction using multiple data modalities. This would also provide the model with a comprehensive perspective of tumors, allowing it to predict the tumor type as well as the most appropriate treatment.
“That was the most important finding in our paper, that this model could be potentially used to aid treatment decisions, guiding doctors toward personalized treatments for patients with cancers of unknown primary origin,” said Intae Moon, an MIT graduate student in electrical engineering and computer science who was the lead author of the new study.
Related Links:
MIT
Dana-Farber Cancer Institute
Latest Molecular Diagnostics News
- Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset
- Blood Test Could Detect HPV-Associated Cancers 10 Years before Clinical Diagnosis
- Low-Cost Point-Of-Care Diagnostic to Expand Access to STI Testing
- 18-Gene Urine Test for Prostate Cancer to Help Avoid Unnecessary Biopsies
- Urine-Based Test Detects Head and Neck Cancer
- Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer
- Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer
- Simple PCR Assay Accurately Differentiates Between Small Cell Lung Cancer Subtypes
- Revolutionary T-Cell Analysis Approach Enables Cancer Early Detection
- Single Genetic Test to Accelerate Diagnoses for Rare Developmental Disorders
- Upgraded Syndromic Testing Analyzer Enables Remote Test Results Access
- Respiratory and Throat Infection PCR Test Detects Multiple Pathogens with Overlapping Symptoms
- Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis
- First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety
- Fluid Biomarker Test Detects Neurodegenerative Diseases Before Symptoms Appear
- New Genomic Method Helps Diagnose Patients with Unexplained Kidney Disease
Channels
Clinical Chemistry
view channel
3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models
Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more.jpg)
POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection
Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more
Highly Reliable Cell-Based Assay Enables Accurate Diagnosis of Endocrine Diseases
The conventional methods for measuring free cortisol, the body's stress hormone, from blood or saliva are quite demanding and require sample processing. The most common method, therefore, involves collecting... Read moreHematology
view channel
Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more
First 4-in-1 Nucleic Acid Test for Arbovirus Screening to Reduce Risk of Transfusion-Transmitted Infections
Arboviruses represent an emerging global health threat, exacerbated by climate change and increased international travel that is facilitating their spread across new regions. Chikungunya, dengue, West... Read more
POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy
Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy
Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read moreImmunology
view channel
Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies
Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell
Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more
Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment
Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read moreMicrobiology
view channel
Mouth Bacteria Test Could Predict Colon Cancer Progression
Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more.jpg)
Unique Metabolic Signature Could Enable Sepsis Diagnosis within One Hour of Blood Collection
Sepsis is a life-threatening condition triggered by an extreme response of the body to an infection. It requires immediate medical intervention to prevent potential death or lasting damage.... Read morePathology
view channel
Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse
High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more.jpg)
Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection
Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read moreTechnology
view channel
New Diagnostic System Achieves PCR Testing Accuracy
While PCR tests are the gold standard of accuracy for virology testing, they come with limitations such as complexity, the need for skilled lab operators, and longer result times. They also require complex... Read more
DNA Biosensor Enables Early Diagnosis of Cervical Cancer
Molybdenum disulfide (MoS2), recognized for its potential to form two-dimensional nanosheets like graphene, is a material that's increasingly catching the eye of the scientific community.... Read more
Self-Heating Microfluidic Devices Can Detect Diseases in Tiny Blood or Fluid Samples
Microfluidics, which are miniature devices that control the flow of liquids and facilitate chemical reactions, play a key role in disease detection from small samples of blood or other fluids.... Read more
Breakthrough in Diagnostic Technology Could Make On-The-Spot Testing Widely Accessible
Home testing gained significant importance during the COVID-19 pandemic, yet the availability of rapid tests is limited, and most of them can only drive one liquid across the strip, leading to continued... Read moreIndustry
view channel
ECCMID Congress Name Changes to ESCMID Global
Over the last few years, the European Society of Clinical Microbiology and Infectious Diseases (ESCMID, Basel, Switzerland) has evolved remarkably. The society is now stronger and broader than ever before... Read more
Bosch and Randox Partner to Make Strategic Investment in Vivalytic Analysis Platform
Given the presence of so many diseases, determining whether a patient is presenting the symptoms of a simple cold, the flu, or something as severe as life-threatening meningitis is usually only possible... Read more