Blood Test to Separate Bacterial and Viral Infections Could Reduce Antibiotic Overuse
By LabMedica International staff writers Posted on 26 Dec 2022 |

In developing countries, most antibiotic prescriptions are not only pointless - an estimated 70% to 80% of them are given for viral infections, which the medications don’t treat - they’re also harmful, as overuse of antibiotics accelerates antibiotic resistance. A similar problem exists in the U.S., where an estimated 30% to 50% of antibiotic prescriptions are given for viral infections. Existing methods to diagnose whether a patient has a bacterial or viral infection include growing the pathogen in a petri dish, which takes several days, or polymerase chain reaction (PCR) testing, which requires knowing the specific pathogen to look for. Now, a new gene expression-based test could allow doctors around the world to quickly and accurately distinguish between bacterial and viral infections, thereby cutting down on antibiotic overuse.
The test developed by scientists at Stanford Medicine (Stanford, CA, USA) is based on how the patient’s immune system responds to an infection. It is the first such diagnostic test validated in diverse global populations - accounting for a wider range of bacterial infections - and the only one to meet the accuracy targets set by the World Health Organization and the Foundation for Innovative New Diagnostics to address antibiotic resistance. Those targets include at least 90% sensitivity (correctly identifying true positives) and 80% specificity (correctly identifying true negatives) to distinguish bacterial and viral infections. The test is one of a new crop of diagnostic tests that look at the host response - that is, how the patient’s immune system is reacting - to identify the type of infection. They measure the expression of certain genes involved in the host’s immune response.
Current host-response tests can distinguish extracellular bacterial infections from viral infections with more than 80% accuracy, but they can identify only 40% to 70% of intracellular infections. Because these host-response tests have been designed using data from Western Europe and North America, they fail to account for the types of infections that are prevalent in low- and middle-income countries. In particular, they have trouble distinguishing the more subtle differences between intracellular bacterial infections and viral infections. In developing countries, common bacterial infections like typhus and tuberculosis are caused by intracellular bacteria, which replicate inside human cells, as do viruses.
To develop a diagnostic test that can separate both types of bacterial infections from viral infections, the Stanford Medicine scientists used publicly available gene expression data from 35 countries. These included 4,754 samples from people of various ages, sexes and races with known infections. The diversity of patients, infections and types of data is more representative of the real world, according to the researchers. Using machine learning and half of these samples, they identified eight genes that are expressed differently in bacterial versus viral infections. They validated their eight-gene test on the remaining samples and more than 300 new samples collected from Nepal and Laos.
They found that these eight genes could distinguish intracellular and extracellular bacterial infections from viral infections with high accuracy, achieving 90% sensitivity and 90% specificity. It is the first diagnostic test to meet (and exceed) the standards proposed by the World Health Organization and the Foundation for Innovative New Diagnostics. The researchers hope that the new diagnostic test can eventually be translated into a point-of-care test and adopted by doctors in both developed and developing countries, as it requires only a blood sample and can be performed in 30 to 45 minutes. The team has applied for a patent on the test.
“Accurately diagnosing whether a patient has a bacterial or viral infection is one of the biggest global health challenges,” said Purvesh Khatri, PhD, associate professor of medicine and biomedical data science, and the senior author. “We’ve shown that this eight-gene signature has higher accuracy and more generalizability for distinguishing bacterial and viral infections, irrespective of whether they are intracellular or extracellular, whether a patient is in a developed or developing country, a man or a woman, an infant or an 80-year-old.”
Related Links:
Stanford Medicine
Latest Microbiology News
- Mouth Bacteria Test Could Predict Colon Cancer Progression
- Unique Metabolic Signature Could Enable Sepsis Diagnosis within One Hour of Blood Collection
- Groundbreaking Diagnostic Platform Provides AST Results With Unprecedented Speed
- Simple Blood Test Combined With Personalized Risk Model Improves Sepsis Diagnosis
- Blood Analysis Predicts Sepsis and Organ Failure in Children
- TB Blood Test Could Detect Millions of Silent Spreaders
- New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours
- New Tuberculosis Test to Expand Testing Access in Low- and Middle-Income Countries
- Rapid Test Diagnoses Tropical Disease within Hours for Faster Antibiotics Treatment
- Rapid Molecular Testing Enables Faster, More Targeted Antibiotic Treatment for Pneumonia
- Rapid AST Platform Provides Targeted Therapeutic Results Days Faster Than Current Standard of Care
- New Analysis Method Detects Pathogens in Blood Faster and More Accurately by Melting DNA
- Rapid Sepsis Test Delivers Two Days Faster Results
- Portable Rapid PCR Diagnostic to Detect Gonorrhea and Antibiotic Susceptibility
- CRISPR Test Diagnoses Mpox Faster Than Lab-Based PCR Method
- Multiplexed PCR Test for Pathogen Detection and Antibiotic Resistance Helps Deliver Rapid UTI Treatment
Channels
Clinical Chemistry
view channel
3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models
Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more.jpg)
POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection
Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more
Highly Reliable Cell-Based Assay Enables Accurate Diagnosis of Endocrine Diseases
The conventional methods for measuring free cortisol, the body's stress hormone, from blood or saliva are quite demanding and require sample processing. The most common method, therefore, involves collecting... Read moreMolecular Diagnostics
view channel
Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset
Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more
Blood Test Could Detect HPV-Associated Cancers 10 Years before Clinical Diagnosis
Human papilloma virus (HPV) is known to cause various cancers, including those of the genitals, anus, mouth, throat, and cervix. HPV-associated oropharyngeal cancer (HPV+OPSCC) is the most common HPV-associated... Read moreHematology
view channel
Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more
First 4-in-1 Nucleic Acid Test for Arbovirus Screening to Reduce Risk of Transfusion-Transmitted Infections
Arboviruses represent an emerging global health threat, exacerbated by climate change and increased international travel that is facilitating their spread across new regions. Chikungunya, dengue, West... Read more
POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy
Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy
Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read moreImmunology
view channel
Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies
Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell
Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more
Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment
Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read morePathology
view channel
Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse
High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more.jpg)
Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection
Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read moreTechnology
view channel
New Diagnostic System Achieves PCR Testing Accuracy
While PCR tests are the gold standard of accuracy for virology testing, they come with limitations such as complexity, the need for skilled lab operators, and longer result times. They also require complex... Read more
DNA Biosensor Enables Early Diagnosis of Cervical Cancer
Molybdenum disulfide (MoS2), recognized for its potential to form two-dimensional nanosheets like graphene, is a material that's increasingly catching the eye of the scientific community.... Read more
Self-Heating Microfluidic Devices Can Detect Diseases in Tiny Blood or Fluid Samples
Microfluidics, which are miniature devices that control the flow of liquids and facilitate chemical reactions, play a key role in disease detection from small samples of blood or other fluids.... Read more
Breakthrough in Diagnostic Technology Could Make On-The-Spot Testing Widely Accessible
Home testing gained significant importance during the COVID-19 pandemic, yet the availability of rapid tests is limited, and most of them can only drive one liquid across the strip, leading to continued... Read moreIndustry
view channel
ECCMID Congress Name Changes to ESCMID Global
Over the last few years, the European Society of Clinical Microbiology and Infectious Diseases (ESCMID, Basel, Switzerland) has evolved remarkably. The society is now stronger and broader than ever before... Read more
Bosch and Randox Partner to Make Strategic Investment in Vivalytic Analysis Platform
Given the presence of so many diseases, determining whether a patient is presenting the symptoms of a simple cold, the flu, or something as severe as life-threatening meningitis is usually only possible... Read more