Successful Transport of Blood Samples with Small Drones
By LabMedica International staff writers Posted on 17 Aug 2015 |

Image: Preparation of clinical blood samples for test-flights by small drone. (1) Left: Custom-cut foam block. (2) Right: Placement of sealed foam lock in the bio-hazard bags as well as absorbent material for potential sample containment (Photos courtesy of Johns Hopkins Medicine and PLOS One).

Image: (3) Left: Placement of first bio-hazard bag inside the second bio-hazard bag. (4) Middle-right: Placement of double-wrapped payload in the fuselage (Photo courtesy of Johns Hopkins Medicine and PLOS One).

Image: (5) Left: Covered, secured, and labeled fuselage. (6) Right: Launch with hand toss (Photo courtesy of Johns Hopkins Medicine and PLOS One).
A proof-of-concept, initial study has shown that small unmanned aerial systems (UAS) could potentially be used to transport clinical blood specimens for diagnostics without damage to the specimens.
In a first rigorous examination published about the impact of drone transport on biological samples, a team of clinical researchers and engineers, led by Timothy Kien Amukele, MD, PhD, pathologist at Johns Hopkins University School of Medicine (Baltimore, MD, USA) and director of a collaboration with Makerere University in Uganda, found that results of common, routine tests on the blood samples were not affected by up to 40 minutes of sample-travel in hobby-sized drones. This could especially aid millions of people in developing nations where most tests are currently done by dedicated laboratories that can be scores of miles from remote clinics in rural and economically impoverished areas that lack, for example, good roads.
“Biological samples can be very sensitive and fragile,” said Dr. Amukele. That sensitivity makes even the pneumatic-tube systems used by many hospitals, for example, unsuitable for transporting blood for certain purposes. Of particular concern related to sample transport in drones is the sudden acceleration that marks the launch of the vehicle and the jostling when the drone lands on its belly. “Such movements could have destroyed blood cells or prompted blood to coagulate and I thought all kinds of blood tests might be affected, but our study shows they weren’t,” he added.
For the study, total of 6 blood samples were collected from each of 56 healthy adult volunteers at Johns Hopkins Hospital. Samples were driven to a flight site an hour’s drive from the hospital on days when the temperature was moderate. There, half the samples were held stationary (non-flight); the other half were packaged for protection during the in-flight environment and to prevent leakage, then loaded into a hand-launched fixed-wing drone and flown for periods of 6–38 minutes. Owing to Federal Aviation Administration (FAA) rules, the flights were conducted in an unpopulated area, kept below 100 meters and in the line-of-sight of the certified drone pilot.
Samples were driven back from the flight-field to the Johns Hopkins Hospital Core Laboratory, where 33 of the most common chemistry, hematology, and coagulation tests were performed (tests that together account for around 80% of all such tests performed), including for sodium, glucose, and red blood cell count.
Comparing lab results of the flown vs. non-flown samples from each volunteer showed that these flights essentially had no impact, although the precision of one blood test—for total carbon dioxide (the bicarbonate test)—did differ for some samples pairs. This may be because the blood sat for up to 8 hours before being tested, but whether the out-of-range results were due to this time lag or to the drone transport is unknown. Nevertheless, there were no consistent differences in results between the flown vs. non-flown blood.
“The ideal way to test that would be to fly the blood around immediately after drawing it, but neither the FAA nor Johns Hopkins would like drones flying around the hospital,” said Dr. Amukele.
The likely next step is a pilot study in Africa where clinics are sometimes 60 or more miles away from labs. “A drone could go 100 km in 40 minutes,” said Dr. Amukele, “They’re less expensive than motorcycles, are not subject to traffic delays, and the technology already exists for the drone to be programmed to “home” to certain GPS coordinates, like a carrier pigeon.”
Drones have already been tested as carriers of medicines to clinics in remote areas, but whether and how drones will be used to carry medicines and potentially infectious patient specimens over more populated areas will depend on laws and regulations.
The study, by Amukele TK, et al, was published July 29, 2015, in the journal PLOS One.
Related Links:
Johns Hopkins University School of Medicine
In a first rigorous examination published about the impact of drone transport on biological samples, a team of clinical researchers and engineers, led by Timothy Kien Amukele, MD, PhD, pathologist at Johns Hopkins University School of Medicine (Baltimore, MD, USA) and director of a collaboration with Makerere University in Uganda, found that results of common, routine tests on the blood samples were not affected by up to 40 minutes of sample-travel in hobby-sized drones. This could especially aid millions of people in developing nations where most tests are currently done by dedicated laboratories that can be scores of miles from remote clinics in rural and economically impoverished areas that lack, for example, good roads.
“Biological samples can be very sensitive and fragile,” said Dr. Amukele. That sensitivity makes even the pneumatic-tube systems used by many hospitals, for example, unsuitable for transporting blood for certain purposes. Of particular concern related to sample transport in drones is the sudden acceleration that marks the launch of the vehicle and the jostling when the drone lands on its belly. “Such movements could have destroyed blood cells or prompted blood to coagulate and I thought all kinds of blood tests might be affected, but our study shows they weren’t,” he added.
For the study, total of 6 blood samples were collected from each of 56 healthy adult volunteers at Johns Hopkins Hospital. Samples were driven to a flight site an hour’s drive from the hospital on days when the temperature was moderate. There, half the samples were held stationary (non-flight); the other half were packaged for protection during the in-flight environment and to prevent leakage, then loaded into a hand-launched fixed-wing drone and flown for periods of 6–38 minutes. Owing to Federal Aviation Administration (FAA) rules, the flights were conducted in an unpopulated area, kept below 100 meters and in the line-of-sight of the certified drone pilot.
Samples were driven back from the flight-field to the Johns Hopkins Hospital Core Laboratory, where 33 of the most common chemistry, hematology, and coagulation tests were performed (tests that together account for around 80% of all such tests performed), including for sodium, glucose, and red blood cell count.
Comparing lab results of the flown vs. non-flown samples from each volunteer showed that these flights essentially had no impact, although the precision of one blood test—for total carbon dioxide (the bicarbonate test)—did differ for some samples pairs. This may be because the blood sat for up to 8 hours before being tested, but whether the out-of-range results were due to this time lag or to the drone transport is unknown. Nevertheless, there were no consistent differences in results between the flown vs. non-flown blood.
“The ideal way to test that would be to fly the blood around immediately after drawing it, but neither the FAA nor Johns Hopkins would like drones flying around the hospital,” said Dr. Amukele.
The likely next step is a pilot study in Africa where clinics are sometimes 60 or more miles away from labs. “A drone could go 100 km in 40 minutes,” said Dr. Amukele, “They’re less expensive than motorcycles, are not subject to traffic delays, and the technology already exists for the drone to be programmed to “home” to certain GPS coordinates, like a carrier pigeon.”
Drones have already been tested as carriers of medicines to clinics in remote areas, but whether and how drones will be used to carry medicines and potentially infectious patient specimens over more populated areas will depend on laws and regulations.
The study, by Amukele TK, et al, was published July 29, 2015, in the journal PLOS One.
Related Links:
Johns Hopkins University School of Medicine
Latest Technology News
- New Diagnostic System Achieves PCR Testing Accuracy
- DNA Biosensor Enables Early Diagnosis of Cervical Cancer
- Self-Heating Microfluidic Devices Can Detect Diseases in Tiny Blood or Fluid Samples
- Breakthrough in Diagnostic Technology Could Make On-The-Spot Testing Widely Accessible
- First of Its Kind Technology Detects Glucose in Human Saliva
- Electrochemical Device Identifies People at Higher Risk for Osteoporosis Using Single Blood Drop
- Novel Noninvasive Test Detects Malaria Infection without Blood Sample
- Portable Optofluidic Sensing Devices Could Simultaneously Perform Variety of Medical Tests
- Point-of-Care Software Solution Helps Manage Disparate POCT Scenarios across Patient Testing Locations
- Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents
- Breakthrough Test Detects Biological Markers Related to Wider Variety of Cancers
- Rapid POC Sensing Kit to Determine Gut Health from Blood Serum and Stool Samples
- Device Converts Smartphone into Fluorescence Microscope for Just USD 50
- Wi-Fi Enabled Handheld Tube Reader Designed for Easy Portability
Channels
Clinical Chemistry
view channel
3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models
Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more.jpg)
POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection
Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more
Highly Reliable Cell-Based Assay Enables Accurate Diagnosis of Endocrine Diseases
The conventional methods for measuring free cortisol, the body's stress hormone, from blood or saliva are quite demanding and require sample processing. The most common method, therefore, involves collecting... Read moreMolecular Diagnostics
view channel
Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset
Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more
Blood Test Could Detect HPV-Associated Cancers 10 Years before Clinical Diagnosis
Human papilloma virus (HPV) is known to cause various cancers, including those of the genitals, anus, mouth, throat, and cervix. HPV-associated oropharyngeal cancer (HPV+OPSCC) is the most common HPV-associated... Read moreHematology
view channel
Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more
First 4-in-1 Nucleic Acid Test for Arbovirus Screening to Reduce Risk of Transfusion-Transmitted Infections
Arboviruses represent an emerging global health threat, exacerbated by climate change and increased international travel that is facilitating their spread across new regions. Chikungunya, dengue, West... Read more
POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy
Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy
Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read moreImmunology
view channel
Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies
Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell
Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more
Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment
Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read moreMicrobiology
view channel
Mouth Bacteria Test Could Predict Colon Cancer Progression
Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more.jpg)
Unique Metabolic Signature Could Enable Sepsis Diagnosis within One Hour of Blood Collection
Sepsis is a life-threatening condition triggered by an extreme response of the body to an infection. It requires immediate medical intervention to prevent potential death or lasting damage.... Read morePathology
view channel
Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse
High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more.jpg)
Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection
Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read moreIndustry
view channel
ECCMID Congress Name Changes to ESCMID Global
Over the last few years, the European Society of Clinical Microbiology and Infectious Diseases (ESCMID, Basel, Switzerland) has evolved remarkably. The society is now stronger and broader than ever before... Read more
Bosch and Randox Partner to Make Strategic Investment in Vivalytic Analysis Platform
Given the presence of so many diseases, determining whether a patient is presenting the symptoms of a simple cold, the flu, or something as severe as life-threatening meningitis is usually only possible... Read more