Ultrahigh Resolution of 3D Human Brain Offered Free for Researchers
By LabMedica International staff writers Posted on 03 Jul 2013 |

Image: The three-dimensional virtual brain is based on data from more than 7,400 tissue sections, each of them only 20 micrometers-thick, which were obtained from a human brain (Photo courtesy of werbefoto-burger.ch/Fotolia)
A milestone three-dimensional (3D) digital reconstruction of a complete human brain, called the BigBrain, for the first time reveals the brain anatomy in microscopic clarity at a spatial resolution of 20 micrometers, exceeding that of existing reference brains presently in the public domain.
The new application is made freely available to the broader scientific community to facilitate the exploration of the field of neuroscience. Researchers from Germany and Canada, who collaborated on the ultra-high resolution brain model, presented their project in the June 21, 2013, issue of the journal Science. “The authors pushed the limits of current technology,” said Science’s senior editor Peter Stern about the international scientific effort. “Such spatial resolution exceeds that of presently available reference brains by a factor of 50 in each of the three spatial dimensions.”
The sophisticated modern image processing technology reveal a never before seen look at the very fine specifics of the human brain’s microstructure (cellular level). The anatomic tool will allow for 3D cytoarchitectonic mapping of the human brain and act as an atlas for small cellular circuit data (single layers or sublayers of the cerebral cortex), explained the researchers.
Until recently, reference brains did not probe further than the macroscopic, or visible, components of the brain. Now, the BigBrain provides a resolution much finer than the typical 1 mm resolution from MRI studies.
The project “has been a tour-de-force to assemble images of over 7,400 individual histological sections, each with its own distortions, rips, and tears, into a coherent 3D volume,” said senior author Dr. Alan Evans, a professor at the Montreal Neurological Institute at McGill University (Montreal, QC, Canada). “This dataset allows for the first time a 3D exploration of human cytoarchitectural anatomy.”
Thin sections of a 65-year-old human female brain, which was embedded in paraffin wax, were cut with a special large-scale tool called a microtome. Then, the 20-micrometer-thick histologic sections were mounted on slides, stained to detect cell structures, and finally digitized with a high-resolution flatbed scanner so researchers could reconstruct the high-resolution 3D brain model. It took approximately 1,000 hours to gather the data. The final images revealed discrepancies in the laminar pattern between brain areas.
The new reference brain, which is part of the European Human Brain Project, serves as a powerful tool to advance neuroscience research and “redefines traditional maps from the beginning of the 20th century,” explained lead author Dr. Katrin Amunts from the Research Center Jülich and director of the Cecile and Oskar Vogt Institute for Brain Research at the Heinrich Heine University Düsseldorf (Germany). “The famous cytoarchitectural atlases of the early 1900s were simplified drawings of a brain and were based on pure visual analysis of cellular organization patterns,” added Dr. Amunts.
Because of the ernormous volume of this dataset, the researchers noted that there will be a drive by those who want to use it to develop new and helpful applications for visualization, data management, and analysis. “We plan to repeat this process in a sample of brains so that we can quantify cytoarchitectural variability,” said Dr. Evans. “We will also integrate this dataset with high-resolution maps of white matter connectivity in postmortem brains. This will allow us to explore the relationship between cortical microanatomy and fiber connectivity,” said Dr. Amunts.
“We are planning to integrate our receptor data of the human brain in the reference frame provided by the BigBrain,” continued senior coauthor Dr. Karl Zilles, who is senior professor of the Jülich Aachen Research Alliance and former director of the Cecile and Oskar Vogt Institute for Brain Research at the Heinrich Heine University Düsseldorf (Germany). “We will also transfer high-resolution maps of quantitative data on the regional and laminar distribution of native receptor complexes to the BigBrain. This will allow us to explore the relationship between cortical microanatomy and key molecules of neurotransmission.”
The extremely detailed anatomic resolution will allow scientists to gather clues into the neurobiologic foundation of cognition, language, emotions, and other processes, according to the study. The researchers in addition plan to extract measurements of cortical thickness to gain insights into better understanding aging and neurodegenerative disorders; create cortical thickness maps to compare data from in vivo imaging; incorporate gene expression data from the Allen Institute for Brain Science (Seattle, WA, USA); and generate a brain model with a resolution of 1 micrometer to capture details of single cell morphology.
Public access of the BigBrain dataset will be provided through the McGill’s CBRAIN Portal, with free registration, according to the researchers.
Related Links:
Montreal Neurological Institute at McGill University
Heinrich Heine University Düsseldorf
CBRAIN Portal
The new application is made freely available to the broader scientific community to facilitate the exploration of the field of neuroscience. Researchers from Germany and Canada, who collaborated on the ultra-high resolution brain model, presented their project in the June 21, 2013, issue of the journal Science. “The authors pushed the limits of current technology,” said Science’s senior editor Peter Stern about the international scientific effort. “Such spatial resolution exceeds that of presently available reference brains by a factor of 50 in each of the three spatial dimensions.”
The sophisticated modern image processing technology reveal a never before seen look at the very fine specifics of the human brain’s microstructure (cellular level). The anatomic tool will allow for 3D cytoarchitectonic mapping of the human brain and act as an atlas for small cellular circuit data (single layers or sublayers of the cerebral cortex), explained the researchers.
Until recently, reference brains did not probe further than the macroscopic, or visible, components of the brain. Now, the BigBrain provides a resolution much finer than the typical 1 mm resolution from MRI studies.
The project “has been a tour-de-force to assemble images of over 7,400 individual histological sections, each with its own distortions, rips, and tears, into a coherent 3D volume,” said senior author Dr. Alan Evans, a professor at the Montreal Neurological Institute at McGill University (Montreal, QC, Canada). “This dataset allows for the first time a 3D exploration of human cytoarchitectural anatomy.”
Thin sections of a 65-year-old human female brain, which was embedded in paraffin wax, were cut with a special large-scale tool called a microtome. Then, the 20-micrometer-thick histologic sections were mounted on slides, stained to detect cell structures, and finally digitized with a high-resolution flatbed scanner so researchers could reconstruct the high-resolution 3D brain model. It took approximately 1,000 hours to gather the data. The final images revealed discrepancies in the laminar pattern between brain areas.
The new reference brain, which is part of the European Human Brain Project, serves as a powerful tool to advance neuroscience research and “redefines traditional maps from the beginning of the 20th century,” explained lead author Dr. Katrin Amunts from the Research Center Jülich and director of the Cecile and Oskar Vogt Institute for Brain Research at the Heinrich Heine University Düsseldorf (Germany). “The famous cytoarchitectural atlases of the early 1900s were simplified drawings of a brain and were based on pure visual analysis of cellular organization patterns,” added Dr. Amunts.
Because of the ernormous volume of this dataset, the researchers noted that there will be a drive by those who want to use it to develop new and helpful applications for visualization, data management, and analysis. “We plan to repeat this process in a sample of brains so that we can quantify cytoarchitectural variability,” said Dr. Evans. “We will also integrate this dataset with high-resolution maps of white matter connectivity in postmortem brains. This will allow us to explore the relationship between cortical microanatomy and fiber connectivity,” said Dr. Amunts.
“We are planning to integrate our receptor data of the human brain in the reference frame provided by the BigBrain,” continued senior coauthor Dr. Karl Zilles, who is senior professor of the Jülich Aachen Research Alliance and former director of the Cecile and Oskar Vogt Institute for Brain Research at the Heinrich Heine University Düsseldorf (Germany). “We will also transfer high-resolution maps of quantitative data on the regional and laminar distribution of native receptor complexes to the BigBrain. This will allow us to explore the relationship between cortical microanatomy and key molecules of neurotransmission.”
The extremely detailed anatomic resolution will allow scientists to gather clues into the neurobiologic foundation of cognition, language, emotions, and other processes, according to the study. The researchers in addition plan to extract measurements of cortical thickness to gain insights into better understanding aging and neurodegenerative disorders; create cortical thickness maps to compare data from in vivo imaging; incorporate gene expression data from the Allen Institute for Brain Science (Seattle, WA, USA); and generate a brain model with a resolution of 1 micrometer to capture details of single cell morphology.
Public access of the BigBrain dataset will be provided through the McGill’s CBRAIN Portal, with free registration, according to the researchers.
Related Links:
Montreal Neurological Institute at McGill University
Heinrich Heine University Düsseldorf
CBRAIN Portal
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models
Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more.jpg)
POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection
Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more
Highly Reliable Cell-Based Assay Enables Accurate Diagnosis of Endocrine Diseases
The conventional methods for measuring free cortisol, the body's stress hormone, from blood or saliva are quite demanding and require sample processing. The most common method, therefore, involves collecting... Read moreMolecular Diagnostics
view channel
Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset
Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more
Blood Test Could Detect HPV-Associated Cancers 10 Years before Clinical Diagnosis
Human papilloma virus (HPV) is known to cause various cancers, including those of the genitals, anus, mouth, throat, and cervix. HPV-associated oropharyngeal cancer (HPV+OPSCC) is the most common HPV-associated... Read moreHematology
view channel
Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more
First 4-in-1 Nucleic Acid Test for Arbovirus Screening to Reduce Risk of Transfusion-Transmitted Infections
Arboviruses represent an emerging global health threat, exacerbated by climate change and increased international travel that is facilitating their spread across new regions. Chikungunya, dengue, West... Read more
POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy
Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy
Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read moreImmunology
view channel
Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies
Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell
Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more
Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment
Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read moreMicrobiology
view channel
Mouth Bacteria Test Could Predict Colon Cancer Progression
Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more.jpg)
Unique Metabolic Signature Could Enable Sepsis Diagnosis within One Hour of Blood Collection
Sepsis is a life-threatening condition triggered by an extreme response of the body to an infection. It requires immediate medical intervention to prevent potential death or lasting damage.... Read morePathology
view channel
Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse
High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more.jpg)
Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection
Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read moreTechnology
view channel
New Diagnostic System Achieves PCR Testing Accuracy
While PCR tests are the gold standard of accuracy for virology testing, they come with limitations such as complexity, the need for skilled lab operators, and longer result times. They also require complex... Read more
DNA Biosensor Enables Early Diagnosis of Cervical Cancer
Molybdenum disulfide (MoS2), recognized for its potential to form two-dimensional nanosheets like graphene, is a material that's increasingly catching the eye of the scientific community.... Read more
Self-Heating Microfluidic Devices Can Detect Diseases in Tiny Blood or Fluid Samples
Microfluidics, which are miniature devices that control the flow of liquids and facilitate chemical reactions, play a key role in disease detection from small samples of blood or other fluids.... Read more
Breakthrough in Diagnostic Technology Could Make On-The-Spot Testing Widely Accessible
Home testing gained significant importance during the COVID-19 pandemic, yet the availability of rapid tests is limited, and most of them can only drive one liquid across the strip, leading to continued... Read moreIndustry
view channel
ECCMID Congress Name Changes to ESCMID Global
Over the last few years, the European Society of Clinical Microbiology and Infectious Diseases (ESCMID, Basel, Switzerland) has evolved remarkably. The society is now stronger and broader than ever before... Read more
Bosch and Randox Partner to Make Strategic Investment in Vivalytic Analysis Platform
Given the presence of so many diseases, determining whether a patient is presenting the symptoms of a simple cold, the flu, or something as severe as life-threatening meningitis is usually only possible... Read more